If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-5=9
We move all terms to the left:
x^2+4x-5-(9)=0
We add all the numbers together, and all the variables
x^2+4x-14=0
a = 1; b = 4; c = -14;
Δ = b2-4ac
Δ = 42-4·1·(-14)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{2}}{2*1}=\frac{-4-6\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{2}}{2*1}=\frac{-4+6\sqrt{2}}{2} $
| 16=11x-3x | | 2x^-2x-60=0 | | 2(x/2-4+x)=40 | | 6-h=9 | | X+x+628=x | | 12-k=11 | | -8=g/4-10 | | 48n-6=-6+5n | | 2p−-12=22 | | h/2+9=11 | | 3^x+^15=81^x | | 2y=620 | | P=-q+25 | | 2k−-2=18 | | 3x+2=255 | | 12=q-9 | | 3x+1=255 | | h/4/9h=51/3 | | 3x+3=255 | | c/4+27=30 | | r/7+32=38 | | 26-3s=14 | | 26−3s=14 | | 8−16m=-17m−7 | | -7+9+6c=4+6c | | 8x+6-134=42 | | j=9/8(j-45) | | 9x-17+5x-1=180 | | 6a-a=0 | | (6/5)x=30+x | | 6/5x=30+x | | (10+2)x(6-4)= |